skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lynn, Jeffrey_W"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Boron (B) alloying transforms the magnetoelectric antiferromagnet Cr2O3into a multifunctional single‐phase material which enables electric field driven π/2 rotation of the Néel vector. Nonvolatile, voltage‐controlled Néel vector rotation is a much‐desired material property in the context of antiferromagnetic spintronics enabling ultralow power, ultrafast, nonvolatile memory, and logic device applications. Néel vector rotation is detected with the help of heavy metal (Pt) Hall‐bars in proximity of pulsed laser deposited B:Cr2O3films. To facilitate operation of B:Cr2O3‐based devices in CMOS (complementary metal‐oxide semiconductor) environments, the Néel temperature,TN, of the functional film must be tunable to values significantly above room temperature. Cold neutron depth profiling and X‐ray photoemission spectroscopy depth profiling reveal thermally activated B‐accumulation at the B:Cr2O3/ vacuum interface in thin films deposited on Al2O3substrates. The B‐enrichment is attributed to surface segregation. Magnetotransport data confirm B‐accumulation at the interface within a layer of ≈50 nm thick where the device properties reside. HereTNenhances from 334 K prior to annealing, to 477 K after annealing for several hours. Scaling analysis determinesTNas a function of the annealing temperature. Stability of post‐annealing device properties is evident from reproducible Néel vector rotation at 370 K performed over the course of weeks. 
    more » « less
  2. In materials with broken time-reversal symmetry, the Berry curvature acts as a reciprocal space magnetic field on the conduction electrons and is a significant contribution to the magnetotransport properties, including the intrinsic anomalous Hall effect. Here, we report neutron diffraction, transport, and magnetization measurements of thin films of doped EuTiO3, an itinerant magnetic material, as a function of carrier density and magnetic field. These films are itinerant antiferromagnets at all doping concentrations. At low carrier densities, the magnetoresistance indicates a metamagnetic transition, which is absent at high carrier densities (>6 × 1020 cm−3). Strikingly, the crossover coincides with a sign change in the spontaneous Hall effects, indicating a sign change in the Berry curvature. We discuss the results in the context of the band structure topology and its coupling to the magnetic texture. 
    more » « less